References
Agrios, G. N. 2005a. INTRODUCTION. In Elsevier, pp. 3–75. https://doi.org/10.1016/b978-0-08-047378-9.50007-5.
Agrios, G. N. 2005b. Plant disease epidemiology. In Elsevier, pp.
265–291. https://doi.org/10.1016/b978-0-08-047378-9.50014-2.
Alves, K. S., and Del Ponte, E. M. 2021. Analysis and simulation of
plant disease progress curves in R: introducing the epifitter package.
Phytopathology Research 3. https://doi.org/10.1186/s42483-021-00098-7.
Alves, K. S., Guimarães, M., Ascari, J. P., Queiroz, M. F., Alfenas, R.
F., Mizubuti, E. S. G., and Del Ponte, E. M. 2021. RGB-based phenotyping
of foliar disease severity under controlled conditions. Tropical Plant
Pathology 47:105–117. https://doi.org/10.1007/s40858-021-00448-y.
Alves, K. S., Shah, D. A., Dillard, H. R., Del Ponte, E. M., and
Pethybridge, S. J. 2022. From reanalysis data to
inference: A framework for linking environment to plant disease
epidemics at the regional scale.
Analytis, S. 1977. Über die Relation zwischen biologischer Entwicklung
und Temperatur bei phytopathogenen Pilzen. Journal of Phytopathology
90:64–76. https://doi.org/10.1111/j.1439-0434.1977.tb02886.x.
Baddeley, A., Diggle, P. J., Hardegen, A., Lawrence, T., Milne, R. K.,
and Nair, G. 2014. On tests of spatial pattern based on simulation
envelopes. Ecological Monographs 84:477–489. https://doi.org/10.1890/13-2042.1.
Baddeley, A., Turner, R., Moller, J., and Hazelton, M. 2005. Residual
analysis for spatial point processes (with discussion). Journal of the
Royal Statistical Society: Series B (Statistical Methodology)
67:617–666. https://doi.org/10.1111/j.1467-9868.2005.00519.x.
Bailey, J. E. 1999. Integrated Method of Organizing, Computing, and
Deploying Weather-Based Disease Advisories for Selected Peanut Disease.
Peanut Science 26:74–80. https://doi.org/10.3146/i0095-3679-26-2-3.
Barnhart, H. X., Haber, M., and Song, J. 2002. Overall Concordance
Correlation Coefficient for Evaluating Agreement Among Multiple
Observers. Biometrics 58:1020–1027. https://doi.org/10.1111/j.0006-341x.2002.01020.x.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting Linear
Mixed-Effects Models Usinglme4. Journal of
Statistical Software 67. https://doi.org/10.18637/jss.v067.i01.
Bernard, F., Sache, I., Suffert, F., and Chelle, M. 2013. The
development of a foliar fungal pathogen does react to leaf temperature!
New Phytologist 198:232–240. https://doi.org/10.1111/nph.12134.
Bock, C. H., Chiang, K.-S., and Del Ponte, E. M. 2021a. Plant disease
severity estimated visually: a century of research, best practices, and
opportunities for improving methods and practices to maximize accuracy.
Tropical Plant Pathology 47:25–42. https://doi.org/10.1007/s40858-021-00439-z.
Bock, C. H., Pethybridge, S. J., Barbedo, J. G. A., Esker, P. D.,
Mahlein, A.-K., and Del Ponte, E. M. 2021b. A phytopathometry glossary
for the twenty-first century: towards consistency and precision in
intra- and inter-disciplinary dialogues. Tropical Plant Pathology
47:14–24. https://doi.org/10.1007/s40858-021-00454-0.
Bourke, P. M. A. 1970. Use of Weather Information in the Prediction of
Plant Disease Epiphytotics. Annual Review of Phytopathology 8:345–370.
https://doi.org/10.1146/annurev.py.08.090170.002021.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg,
C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M. 2017.
glmmTMB balances speed and flexibility among
packages for zero-inflated generalized linear mixed modeling. The R
Journal 9:378–400. https://doi.org/10.32614/RJ-2017-066.
Brown, V. A. 2021. An Introduction to Linear Mixed-Effects Modeling in
R. Advances in Methods and Practices in Psychological Science
4:251524592096035. https://doi.org/10.1177/2515245920960351.
Bulger, M. A. 1987. Influence of temperature and wetness duration on
infection of strawberry flowers byBotrytis
cinereaand disease incidence of fruit originating from
infected flowers. Phytopathology 77:1225. https://doi.org/10.1094/phyto-77-1225.
Café-Filho, A. C., Santos, G. R., and Laranjeira, F. F. 2010. Temporal
and spatial dynamics of watermelon gummy stem blight epidemics. European
Journal of Plant Pathology 128:473–482. https://doi.org/10.1007/s10658-010-9674-1.
Caffi, T., Rossi, V., Cossu, A., and Fronteddu, F. 2007. Empirical vs.
mechanistic models for primary infections of Plasmopara
viticola*. EPPO Bulletin 37:261–271. https://doi.org/10.1111/j.1365-2338.2007.01120.x.
Caffi, T., Rossi, V., Legler, S. E., and Bugiani, R. 2010. A mechanistic
model simulating ascosporic infections by Erysiphe
necator, the powdery mildew fungus of grapevine. Plant
Pathology 60:522–531. https://doi.org/10.1111/j.1365-3059.2010.02395.x.
Calvero Jr, S. B., Coakley, S. M., and Teng, P. S. 1996. Development of
empirical forecasting models for rice blast based on weather factors.
Plant Pathology 45:667–678. https://doi.org/10.1046/j.1365-3059.1996.d01-168.x.
Campbell, C. L., and Madden. L., V. 1990. Introduction to plant
disease epidemiology. Wiley.
Cao, X., Yao, D., Xu, X., Zhou, Y., Ding, K., Duan, X., Fan, J., and
Luo, Y. 2015. Development of Weather- and Airborne Inoculum-Based Models
to Describe Disease Severity of Wheat Powdery Mildew. Plant Disease
99:395–400. https://doi.org/10.1094/pdis-02-14-0201-re.
Chester, K. S. 1950. Plant disease losses : Their appraisal and
interpretation /. https://doi.org/10.5962/bhl.title.86198.
Chiang, K.-S., and Bock, C. H. 2021. Understanding the ramifications of
quantitative ordinal scales on accuracy of estimates of disease severity
and data analysis in plant pathology. Tropical Plant Pathology 47:58–73.
https://doi.org/10.1007/s40858-021-00446-0.
Chiang, K.-S., Chang, Y. M., Liu, H. I., Lee, J. Y., El Jarroudi, M.,
and Bock, C. 2023. Survival Analysis as a Basis to Test Hypotheses When
Using Quantitative Ordinal Scale Disease Severity Data. Phytopathology®.
https://doi.org/10.1094/phyto-02-23-0055-r.
Chiang, K.-S., Liu, S.-C., Bock, C. H., and Gottwald, T. R. 2014. What
Interval Characteristics Make a Good Categorical Disease Assessment
Scale? Phytopathology® 104:575–585. https://doi.org/10.1094/phyto-10-13-0279-r.
Coakley, S. M. 1985. Model for predicting severity of septoria tritici
blotch on winter wheat. Phytopathology 75:1245. https://doi.org/10.1094/phyto-75-1245.
Coakley, S. M. 1988. Predicting stripe rust severity on winter wheat
using an improved method for analyzing meteorological and rust data.
Phytopathology 78:543. https://doi.org/10.1094/phyto-78-543.
Coakley, S. M., McDaniel, L. R., and Line, R. F. 1988. Quantifying how
climatic factors affect variation in plant disease severity: A general
method using a new way to analyze meteorological data. Climatic Change
12:57–75. https://doi.org/10.1007/bf00140264.
Cruz, C. D., and Valent, B. 2017. Wheat blast disease: danger on the
move. Tropical Plant Pathology 42:210–222. https://doi.org/10.1007/s40858-017-0159-z.
Dalla Lana, F., Madden, L. V., and Paul, P. A. 2021. Natural Occurrence
of Maize Gibberella Ear Rot and Contamination of Grain with Mycotoxins
in Association with Weather Variables. Plant Disease 105:114–126. https://doi.org/10.1094/pdis-05-20-0952-re.
Dalla Lana, F., Ziegelmann, P. K., Maia, A. de H. N., Godoy, C. V., and
Del Ponte, E. M. 2015. Meta-Analysis of the Relationship Between Crop
Yield and Soybean Rust Severity. Phytopathology® 105:307–315. https://doi.org/10.1094/phyto-06-14-0157-r.
Dalla Pria, M., Christiano, R. C. S., Furtado, E. L., Amorim, L., and
Bergamin Filho, A. 2006. Effect of temperature and leaf wetness duration
on infection of sweet oranges by Asiatic citrus canker. Plant Pathology
55:657–663. https://doi.org/10.1111/j.1365-3059.2006.01393.x.
De Cól, M., Coelho, M., and Del Ponte, E. M. 2024. Weather-Based
Logistic Regression Models for Predicting Wheat Head Blast Epidemics.
Plant Disease 108:2206–2213. https://doi.org/10.1094/pdis-11-23-2513-re.
De Rossi, R. L., Guerra, F. A., Plazas, M. C., Vuletic, E. E., Brücher,
E., Guerra, G. D., and Reis, E. M. 2022. Crop damage, economic losses,
and the economic damage threshold for northern corn leaf blight. Crop
Protection 154:105901. https://doi.org/10.1016/j.cropro.2021.105901.
De Wolf, E. D., and Isard, S. A. 2007. Disease Cycle Approach to Plant
Disease Prediction. Annual Review of Phytopathology 45:203–220. https://doi.org/10.1146/annurev.phyto.44.070505.143329.
De Wolf, E. D., Madden, L. V., and Lipps, P. E. 2003. Risk Assessment
Models for Wheat Fusarium Head Blight Epidemics Based on Within-Season
Weather Data. Phytopathology® 93:428–435. https://doi.org/10.1094/phyto.2003.93.4.428.
Del Ponte, E. M., Cazón, L. I., Alves, K. S., Pethybridge, S. J., and
Bock, C. H. 2022. How much do standard area diagrams improve accuracy of
visual estimates of the percentage area diseased? A systematic review
and meta-analysis. Tropical Plant Pathology 47:43–57. https://doi.org/10.1007/s40858-021-00479-5.
Del Ponte, E. M., Fernandes, J. M. C., and Pavan, W. 2005. A risk
infection simulation model for fusarium head blight of wheat.
Fitopatologia Brasileira 30:634–642. https://doi.org/10.1590/s0100-41582005000600011.
Del Ponte, E. M., Godoy, C. V., Li, X., and Yang, X. B. 2006. Predicting
Severity of Asian Soybean Rust Epidemics with Empirical Rainfall Models.
Phytopathology® 96:797–803. https://doi.org/10.1094/phyto-96-0797.
Del Ponte, E. M., Mahlein, A.-K., and Bock, C. H. 2024. Plant disease
quantification. In Elsevier, pp. 211–225. https://doi.org/10.1016/b978-0-12-822429-8.00006-6.
Del Ponte, E. M., Nelson, S. C., and Pethybridge, S. J. 2019. Evaluation
of App-Embedded Disease Scales for Aiding Visual Severity Estimation of
Cercospora Leaf Spot of Table Beet. Plant Disease 103:1347–1356. https://doi.org/10.1094/pdis-10-18-1718-re.
Del Ponte, E. M., Pethybridge, S. J., Bock, C. H., Michereff, S. J.,
Machado, F. J., and Spolti, P. 2017. Standard Area Diagrams for Aiding
Severity Estimation: Scientometrics, Pathosystems, and Methodological
Trends in the Last 25 Years. Phytopathology® 107:1161–1174. https://doi.org/10.1094/phyto-02-17-0069-fi.
Duffeck, M. R., Santos Alves, K. dos, Machado, F. J., Esker, P. D., and
Del Ponte, E. M. 2020. Modeling Yield Losses and Fungicide Profitability
for Managing Fusarium Head Blight in Brazilian Spring Wheat.
Phytopathology® 110:370–378. https://doi.org/10.1094/phyto-04-19-0122-r.
Duthie, J. A. 1997. Models of the Response of Foliar Parasites to the
Combined Effects of Temperature and Duration of Wetness. Phytopathology®
87:1088–1095. https://doi.org/10.1094/phyto.1997.87.11.1088.
El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J.,
Pasquali, M., Maraite, H., and Delfosse, P. 2017. A Threshold-Based
Weather Model for Predicting Stripe Rust Infection in Winter Wheat.
Plant Disease 101:693–703. https://doi.org/10.1094/pdis-12-16-1766-re.
Esser, D. S., Leveau, J. H. J., Meyer, K. M., and Wiegand, K. 2014.
Spatial scales of interactions among bacteria and between bacteria and
the leaf surface. FEMS Microbiology Ecology 91. https://doi.org/10.1093/femsec/fiu034.
Evans, K. J. 1992. A model based on temperature and leaf wetness
duration for establishment of alternaria leaf blight of muskmelon.
Phytopathology 82:890. https://doi.org/10.1094/phyto-82-890.
Fedele, G., Brischetto, C., Rossi, V., and Gonzalez-Dominguez, E. 2022.
A Systematic Map of the Research on Disease Modelling for Agricultural
Crops Worldwide. Plants 11:724. https://doi.org/10.3390/plants11060724.
Franceschi, V. T., Alves, K. S., Mazaro, S. M., Godoy, C. V., Duarte, H.
S. S., and Del Ponte, E. M. 2020. A new standard area diagram set for
assessment of severity of soybean rust improves accuracy of estimates
and optimizes resource use. Plant Pathology 69:495–505. https://doi.org/10.1111/ppa.13148.
Francl, L. J. 2001. The..disease triangle: A plant pathological paradigm
revisited. The Plant Health Instructor. https://doi.org/10.1094/phi-t-2001-0517-01.
Gertheiss, J., Rügamer, D., Liew, B. X. W., and Greven, S. 2024.
Functional Data Analysis: An Introduction and Recent Developments.
Biometrical Journal 66. https://doi.org/10.1002/bimj.202300363.
Gigot, C. 2018. Epiphy: Analysis of plant disease epidemics.
Godoy, C. V., Seixas, C. D. S., Soares, R. M., Marcelino-Guimarães, F.
C., Meyer, M. C., and Costamilan, L. M. 2016. Asian soybean rust in
brazil: Past, present, and future. Pesquisa Agropecuária Brasileira
51:407–421. https://doi.org/10.1590/s0100-204x2016000500002.
González-Domínguez, E., Caffi, T., Rossi, V., Salotti, I., and Fedele,
G. 2023. Plant Disease Models and Forecasting: Changes in Principles and
Applications over the Last 50 Years. Phytopathology® 113:678–693. https://doi.org/10.1094/phyto-10-22-0362-kd.
González-Domínguez, E., Martins, R. B., Del Ponte, E. M., Michereff, S.
J., García-Jiménez, J., and Armengol, J. 2014. Development and
validation of a standard area diagram set to aid assessment of severity
of loquat scab on fruit. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-014-0400-2.
Gouache, D., Léon, M. S., Duyme, F., and Braun, P. 2015. A novel
solution to the variable selection problem in Window Pane approaches of
plant pathogen Climate models: Development, evaluation and
application of a climatological model for brown rust of wheat.
Agricultural and Forest Meteorology 205:51–59. https://doi.org/10.1016/j.agrformet.2015.02.013.
Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A.,
Zarco-Tejada, P., and Mauser, W. 2018. Spaceborne Imaging Spectroscopy
for Sustainable Agriculture: Contributions and Challenges. Surveys in
Geophysics 40:515–551. https://doi.org/10.1007/s10712-018-9492-0.
Hau, B., and Kranz, J. 1990. Mathematics and statistics for analyses in
epidemiology. In Springer Berlin Heidelberg, pp. 12–52. https://doi.org/10.1007/978-3-642-75398-5_2.
Hebert, T. T. 1982. The rationale for the horsfall-barratt plant disease
assessment scale. Phytopathology 72:1269. https://doi.org/10.1094/phyto-72-1269.
Hjelkrem, A.-G. R., Aamot, H. U., Lillemo, M., Sørensen, E. S., Brodal,
G., Russenes, A. L., Edwards, S. G., and Hofgaard, I. S. 2021. Weather
Patterns Associated with DON Levels in Norwegian Spring Oat Grain: A
Functional Data Approach. Plants 11:73. https://doi.org/10.3390/plants11010073.
Hughes, G., and Madden, L. V. 1992. Aggregation and incidence of
disease. Plant Pathology 41:657–660. https://doi.org/10.1111/j.1365-3059.1992.tb02549.x.
Huichun YE, Senzheng CHEN, Anting GUO, Chaojia NIE, and Jingjing WANG.
2022. A dataset of UAV multispectral images for banana Fusarium wilt
survey. https://doi.org/10.57760/SCIENCEDB.07000.
Islam, M. T., Kim, K.-H., and Choi, J. 2019. Wheat Blast in Bangladesh:
The Current Situation and Future Impacts. The Plant Pathology Journal
35:1–10. https://doi.org/10.5423/ppj.rw.08.2018.0168.
Jeger, M. J., and Viljanen-Rollinson, S. L. H. 2001. The use of the area
under the disease-progress curve (AUDPC) to assess quantitative disease
resistance in crop cultivars. Theoretical and Applied Genetics
102:32–40. https://doi.org/10.1007/s001220051615.
Jesus Junior, W. C. de, and Bassanezi, R. B. 2004. Análise da dinâmica e
estrutura de focos da morte súbita dos citros. Fitopatologia Brasileira
29:399–405. https://doi.org/10.1590/s0100-41582004000400007.
Ji, T., Languasco, L., Li, M., and Rossi, V. 2021. Effects of
Temperature and Wetness Duration on Infection by Coniella diplodiella,
the Fungus Causing White Rot of Grape Berries. Plants 10:1696. https://doi.org/10.3390/plants10081696.
Ji, T., Salotti, I., Altieri, V., Li, M., and Rossi, V. 2023.
Temperature-Dependent Growth and Spore Germination of Fungi Causing
Grapevine Trunk Diseases: Quantitative Analysis of Literature Data.
Plant Disease 107:1386–1398. https://doi.org/10.1094/pdis-09-22-2249-re.
Jones, H. G., and Vaughan, R. A. 2010. Remote sensing of vegetation:
Principles, techniques, and applications. Oxford, United Kingdom:
Oxford University Press.
Kouadio, L., El Jarroudi, M., Belabess, Z., Laasli, S.-E., Roni, M. Z.
K., Amine, I. D. I., Mokhtari, N., Mokrini, F., Junk, J., and Lahlali,
R. 2023. A Review on UAV-Based Applications for Plant Disease Detection
and Monitoring. Remote Sensing 15:4273. https://doi.org/10.3390/rs15174273.
Krause, R. A., and Massie, L. B. 1975. Predictive Systems: Modern
Approaches to Disease Control. Annual Review of Phytopathology 13:31–47.
https://doi.org/10.1146/annurev.py.13.090175.000335.
Krause, R. A., Massie, L. B., and Hyre, R. A. 1975. BLITECAST: A
computerized forecast of potato late blight. The Plant Disease Reporter
59:95.
Kriss, A. B., Paul, P. A., and Madden, L. V. 2010. Relationship Between
Yearly Fluctuations in Fusarium Head Blight Intensity and Environmental
Variables: A Window-Pane Analysis. Phytopathology® 100:784–797. https://doi.org/10.1094/phyto-100-8-0784.
Lannou, C. 2012. Variation and Selection of Quantitative Traits in Plant
Pathogens. Annual Review of Phytopathology 50:319–338. https://doi.org/10.1146/annurev-phyto-081211-173031.
Laranjeira, F. F., Bergamin Filho, A. R., and Amorim, L. I. 1998.
Dinâmica e estrutura de focos da clorose variegada dos
citros (CVC). Fitopatologia Brasileira 23:36–41.
Laranjeira, F. F., Bergamin Filho, A., Amorim, L., and Gottwald, T. R.
2004. Dinâmica espacial da clorose variegada dos citros em três regiões
do estado de são paulo. Fitopatologia Brasileira 29:56–65. https://doi.org/10.1590/s0100-41582004000100009.
Lehner, M. S., Pethybridge, S. J., Meyer, M. C., and Del Ponte, E. M.
2016. Meta-analytic modelling of the
incidenceyield and incidencesclerotial
production relationships in soybean white mould epidemics. Plant
Pathology 66:460–468. https://doi.org/10.1111/ppa.12590.
Leiminger, J. H., and Hausladen, H. 2012. Early Blight Control in Potato
Using Disease-Orientated Threshold Values. Plant Disease 96:124–130. https://doi.org/10.1094/pdis-05-11-0431.
Li, B., Madden, L. V., and Xu, X. 2011. Spatial analysis by distance
indices: an alternative local clustering index for studying spatial
patterns. Methods in Ecology and Evolution 3:368–377. https://doi.org/10.1111/j.2041-210x.2011.00165.x.
Li, F., Upadhyaya, N. M., Sperschneider, J., Matny, O., Nguyen-Phuc, H.,
Mago, R., Raley, C., Miller, M. E., Silverstein, K. A. T., Henningsen,
E., Hirsch, C. D., Visser, B., Pretorius, Z. A., Steffenson, B. J.,
Schwessinger, B., Dodds, P. N., and Figueroa, M. 2019. Emergence of the
Ug99 lineage of the wheat stem rust pathogen through somatic
hybridisation. Nature Communications 10. https://doi.org/10.1038/s41467-019-12927-7.
Lin, L. I.-K. 1989. A concordance correlation coefficient to evaluate
reproducibility. Biometrics 45:255. https://doi.org/10.2307/2532051.
Liu, H. I., Tsai, J. R., Chung, W. H., Bock, C. H., and Chiang, K. S.
2019. Effects of Quantitative Ordinal Scale Design on the Accuracy of
Estimates of Mean Disease Severity. Agronomy 9:565. https://doi.org/10.3390/agronomy9090565.
Lowe, A., Harrison, N., and French, A. P. 2017. Hyperspectral image
analysis techniques for the detection and classification of the early
onset of plant disease and stress. Plant Methods 13. https://doi.org/10.1186/s13007-017-0233-z.
MacHardy, W. E. 1989. A revision of mills’s criteria for predicting
apple scab infection periods. Phytopathology 79:304. https://doi.org/10.1094/phyto-79-304.
Madden, L. 1978. FAST, a forecast system for alternaria solani on
tomato. Phytopathology 68:1354. https://doi.org/10.1094/phyto-68-1354.
Madden, L. V. 1982. Evaluation of tests for randomness of infected
plants. Phytopathology 72:195. https://doi.org/10.1094/phyto-72-195.
Madden, L. V., Esker, P. D., and Pethybridge, S. J. 2021. Forrest W.
Nutter, Jr.: a career in phytopathometry. Tropical Plant Pathology
47:5–13. https://doi.org/10.1007/s40858-021-00469-7.
Madden, L. V., Hughes, G., and Bosch, F. van den, eds. 2007a. CHAPTER
12: Epidemics and crop yield. In The American Phytopathological Society,
pp. 353–388. https://doi.org/10.1094/9780890545058.012.
Madden, L. V., Hughes, G., Moraes, W. B., Xu, X.-M., and Turechek, W. W.
2018. Twenty-Five Years of the Binary Power Law for Characterizing
Heterogeneity of Disease Incidence. Phytopathology® 108:656–680. https://doi.org/10.1094/phyto-07-17-0234-rvw.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007b. Spatial aspects
of epidemicsIII: Patterns of plant disease. In The American
Phytopathological Society, pp. 235–278. https://doi.org/10.1094/9780890545058.009.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007c. Temporal
analysis i: Quantifying and comparing epidemics. In The American
Phytopathological Society, pp. 63–116. https://doi.org/10.1094/9780890545058.004.
Madden, L. V., Hughes, G., and van den Bosch, F. 2007d. The study of
plant disease epidemics. The American Phytopathological Society. https://doi.org/10.1094/9780890545058.
Madden, L. V., and Paul, P. A. 2009. Assessing Heterogeneity in the
Relationship Between Wheat Yield and Fusarium Head Blight Intensity
Using Random-Coefficient Mixed Models. Phytopathology® 99:850–860. https://doi.org/10.1094/phyto-99-7-0850.
Madden, L. V., and Paul, P. A. 2011. Meta-Analysis for Evidence
Synthesis in Plant Pathology: An Overview. Phytopathology® 101:16–30. https://doi.org/10.1094/phyto-03-10-0069.
Magarey, R. D., and Sutton, T. B. 2007. How to Create and Deploy
Infection Models for Plant Pathogens. In Springer Netherlands, pp. 3–25.
https://doi.org/10.1007/978-1-4020-6061-8_1.
Magarey, R. D., Sutton, T. B., and Thayer, C. L. 2005. A Simple Generic
Infection Model for Foliar Fungal Plant Pathogens. Phytopathology®
95:92–100. https://doi.org/10.1094/phyto-95-0092.
Magarey, R. D., Travis, J. W., Russo, J. M., Seem, R. C., and Magarey,
P. A. 2002. Decision Support Systems: Quenching the Thirst. Plant
Disease 86:4–14. https://doi.org/10.1094/pdis.2002.86.1.4.
Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J.,
Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J.,
Peterson, G. L., Pedley, K. F., Farman, M. L., and Valent, B. 2016.
First Report of Wheat Blast Caused by Magnaporthe
oryzae Pathotype triticum in
Bangladesh. Plant Disease 100:2330–2330. https://doi.org/10.1094/pdis-05-16-0666-pdn.
Mehra, L. K., Cowger, C., Gross, K., and Ojiambo, P. S. 2016. Predicting
pre-planting risk of stagonospora nodorum blotch in winter wheat using
machine learning models. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00390.
Mehra, L. K., Cowger, C., and Ojiambo, P. S. 2017. A Model for
Predicting Onset of Stagonospora nodorum Blotch in Winter Wheat Based on
Preplanting and Weather Factors. Phytopathology® 107:635–644. https://doi.org/10.1094/phyto-03-16-0133-r.
Mikaberidze, A., Mundt, C. C., and Bonhoeffer, S. 2015. Data from:
Invasiveness of plant pathogens depends on the spatial scale of host
distribution. https://doi.org/10.5061/DRYAD.F2J8S.
Mills, W. D. 1944. Efficient use of sulfur dusts and sprays during rain
to control apple scab. Cornell Extension Bulletin 630.
Moran, P. A. P. 1950. Notes on continuous stochastic phenomena.
Biometrika 37:17. https://doi.org/10.2307/2332142.
Moreira, R. R., Silva Silveira Duarte, H. da, and De Mio, L. L. M. 2018.
Improving accuracy, precision and reliability of severity estimates of
Glomerella leaf spot on apple leaves using a new standard area diagram
set. European Journal of Plant Pathology 153:975–982. https://doi.org/10.1007/s10658-018-01610-0.
Mumford, J. D., and Norton, G. A. 1984. Economics of Decision Making in
Pest Management. Annual Review of Entomology 29:157–174. https://doi.org/10.1146/annurev.en.29.010184.001105.
Mundt, C. C., Ahmed, H. U., Finckh, M. R., Nieva, L. P., and Alfonso, R.
F. 1999. Primary Disease Gradients of Bacterial Blight of Rice.
Phytopathology® 89:64–67. https://doi.org/10.1094/phyto.1999.89.1.64.
Nelson, S. C. 1996. A simple analysis of disease foci. Phytopathology
86:432–439.
Nutter, F. W., and Esker, P. D. 2006. The Role of Psychophysics in
Phytopathology: The WeberFechner Law Revisited. European
Journal of Plant Pathology 114:199–213. https://doi.org/10.1007/s10658-005-4732-9.
Nutter, F. W., Esker, P. D., and Netto, R. A. C. 2006. Disease
Assessment Concepts and the Advancements Made in Improving the Accuracy
and Precision of Plant Disease Data. European Journal of Plant Pathology
115:95–103. https://doi.org/10.1007/s10658-005-1230-z.
Nutter, F., Teng, P., and Royer, M. 1993. Terms and concepts for yield,
crop loss, and disease thresholds. Plant Disease 77:193–211.
Oerke, E.-C. 2020. Remote Sensing of Diseases. Annual Review of
Phytopathology 58:225–252. https://doi.org/10.1146/annurev-phyto-010820-012832.
Olivoto, T. 2022. Lights, camera, pliman! An R package for plant image
analysis. Methods in Ecology and Evolution 13:789–798. https://doi.org/10.1111/2041-210x.13803.
Olivoto, T., Andrade, S. M. P., and M. Del Ponte, E. 2022. Measuring
plant disease severity in R: introducing and evaluating the pliman
package. Tropical Plant Pathology 47:95–104. https://doi.org/10.1007/s40858-021-00487-5.
Onofri, A., Piepho, H.-P., and Kozak, M. 2018. Analysing censored data
in agricultural research: A review with examples and software tips.
Annals of Applied Biology 174:3–13. https://doi.org/10.1111/aab.12477.
Parker, S. K., Nutter, F. W., and Gleason, M. L. 1997. Directional
Spread of Septoria Leaf Spot in Tomato Rows. Plant Disease 81:272–276.
https://doi.org/10.1094/pdis.1997.81.3.272.
Paul, P. A., and Munkvold, G. P. 2004. A Model-Based Approach to
Preplanting Risk Assessment for Gray Leaf Spot of Maize. Phytopathology®
94:1350–1357. https://doi.org/10.1094/phyto.2004.94.12.1350.
Pedigo, L. P., Hutchins, S. H., and Higley, L. G. 1986. Economic Injury
Levels in Theory and Practice. Annual Review of Entomology 31:341–368.
https://doi.org/10.1146/annurev.en.31.010186.002013.
Pegg, K. G., Coates, L. M., O’Neill, W. T., and Turner, D. W. 2019. The
epidemiology of fusarium wilt of banana. Frontiers in Plant Science 10.
https://doi.org/10.3389/fpls.2019.01395.
Pereira, W. E. L., Andrade, S. M. P. de, Del Ponte, E. M., Esteves, M.
B., Canale, M. C., Takita, M. A., Coletta-Filho, H. D., and De Souza, A.
A. 2020. Severity assessment in the Nicotiana tabacum-Xylella fastidiosa
subsp. pauca pathosystem: design and interlaboratory validation of a
standard area diagram set. Tropical Plant Pathology 45:710–722. https://doi.org/10.1007/s40858-020-00401-5.
Pfender, W. F. 2003. Prediction of Stem Rust Infection Favorability, by
Means of Degree-Hour Wetness Duration, for Perennial Ryegrass Seed
Crops. Phytopathology® 93:467–477. https://doi.org/10.1094/phyto.2003.93.4.467.
Pietravalle, S., Shaw, M. W., Parker, S. R., and Bosch, F. van den.
2003. Modeling of Relationships Between Weather and Septoria
tritici Epidemics on Winter Wheat: A Critical Approach.
Phytopathology® 93:1329–1339. https://doi.org/10.1094/phyto.2003.93.10.1329.
Reis, E. M., Hoffmann, L. L., and Blum, M. 2002. Modelo de ponto crítico
para estimar os danos causados pelo oídio em cevada. Fitopatologia
Brasileira 27:644–646.
Rossi, V., Caffi, T., Giosuè, S., and Bugiani, R. 2008. A mechanistic
model simulating primary infections of downy mildew in grapevine.
Ecological Modelling 212:480–491. https://doi.org/10.1016/j.ecolmodel.2007.10.046.
Rossi, V., Giosuè, S., and Caffi, T. 2010. Modelling Plant Diseases for
Decision Making in Crop Protection. In Springer Netherlands, pp.
241–258. https://doi.org/10.1007/978-90-481-9277-9_15.
Rossi, V., Onesti, G., Legler, S. E., and Caffi, T. 2014. Use of systems
analysis to develop plant disease models based on literature data: grape
black-rot as a case-study. European Journal of Plant Pathology
141:427–444. https://doi.org/10.1007/s10658-014-0553-z.
Rotem, J. 1988. Techniques of Controlled-Condition Experiments. In
Springer Berlin Heidelberg, pp. 19–31. https://doi.org/10.1007/978-3-642-95534-1_3.
Sackett, K. E., and Mundt, C. C. 2005. Primary Disease Gradients of
Wheat Stripe Rust in Large Field Plots. Phytopathology® 95:983–991. https://doi.org/10.1094/phyto-95-0983.
Saif, M. S., Chancia, R., Pethybridge, S., Murphy, S. P., Hassanzadeh,
A., and Aardt, J. van. 2023. Forecasting Table Beet Root Yield Using
Spectral and Textural Features from Hyperspectral UAS Imagery. Remote
Sensing 15:794. https://doi.org/10.3390/rs15030794.
Saif, M. S., Chancia, R., Sharma, P., Murphy, S., Raqueno, N., Bauch,
T., Pethybridge, S., and Aardt, J. van. 2024. Data for: Estimation of
cercospora leaf spot disease severity in table beets from UAS
multispectral images. https://doi.org/10.17632/V9B7RWRWX9.1.
Salotti, I., Bove, F., and Rossi, V. 2022. Development and validation of
a mechanistic, weather-based model for predicting puccinia graminis f.
Sp. Tritici infections and stem rust progress in wheat. Frontiers in
Plant Science 13. https://doi.org/10.3389/fpls.2022.897680.
Salotti, I., and Rossi, V. 2023. A Mechanistic Model Accounting for the
Effect of Soil Moisture, Weather, and Host Growth Stage on the
Development of Sclerotinia sclerotiorum. Plant
Disease 107:514–533. https://doi.org/10.1094/pdis-12-21-2743-re.
Savary, S., Nelson, A. D., Djurle, A., Esker, P. D., Sparks, A., Amorim,
L., Bergamin Filho, A., Caffi, T., Castilla, N., Garrett, K., McRoberts,
N., Rossi, V., Yuen, J., and Willocquet, L. 2018. Concepts, approaches,
and avenues for modelling crop health and crop losses. European Journal
of Agronomy 100:4–18. https://doi.org/10.1016/j.eja.2018.04.003.
Savary, S., Teng, P. S., Willocquet, L., and Nutter, F. W. 2006.
Quantification and Modeling of Crop Losses: A Review of Purposes. Annual
Review of Phytopathology 44:89–112. https://doi.org/10.1146/annurev.phyto.44.070505.143342.
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts,
N., and Nelson, A. 2019. The global burden of pathogens and pests on
major food crops. Nature Ecology & Evolution 3:430–439. https://doi.org/10.1038/s41559-018-0793-y.
Scott, P. R., and Hollins, T. W. 1974. Effects of eyespot on the yield
of winter wheat. Annals of Applied Biology 78:269–279. https://doi.org/10.1111/j.1744-7348.1974.tb01506.x.
Seem, R. C. 1984. Simple decision aids for practical control of pests.
Plant Disease 68:656. https://doi.org/10.1094/pd-69-656.
Shah, D. A., De Wolf, E. D., Paul, P. A., and Madden, L. V. 2019a.
Functional Data Analysis of Weather Variables Linked to Fusarium Head
Blight Epidemics in the United States. Phytopathology® 109:96–110. https://doi.org/10.1094/phyto-11-17-0386-r.
Shah, D. A., and Madden, L. V. 2004. Nonparametric Analysis of Ordinal
Data in Designed Factorial Experiments. Phytopathology® 94:33–43. https://doi.org/10.1094/phyto.2004.94.1.33.
Shah, D. A., Molineros, J. E., Paul, P. A., Willyerd, K. T., Madden, L.
V., and De Wolf, E. D. 2013. Predicting Fusarium Head Blight Epidemics
With Weather-Driven Pre- and Post-Anthesis Logistic Regression Models.
Phytopathology® 103:906–919. https://doi.org/10.1094/phyto-11-12-0304-r.
Shah, D. A., Paul, P. A., De Wolf, E. D., and Madden, L. V. 2019b.
Predicting plant disease epidemics from functionally represented weather
series. Philosophical Transactions of the Royal Society B: Biological
Sciences 374:20180273. https://doi.org/10.1098/rstb.2018.0273.
Shrout, P. E., and Fleiss, J. L. 1979. Intraclass correlations: Uses in
assessing rater reliability. Psychological Bulletin 86:420–428. https://doi.org/10.1037/0033-2909.86.2.420.
Simko, I., and Piepho, H.-P. 2012. The Area Under the Disease Progress
Stairs: Calculation, Advantage, and Application. Phytopathology®
102:381–389. https://doi.org/10.1094/phyto-07-11-0216.
Skaracis, G. N., Pavli, O. I., and Biancardi, E. 2010. Cercospora Leaf
Spot Disease of Sugar Beet. Sugar Tech 12:220–228. https://doi.org/10.1007/s12355-010-0055-z.
Tan, W., Li, K., Liu, D., and Xing, W. 2023. Cercospora leaf spot
disease of sugar beet. Plant Signaling & Behavior 18. https://doi.org/10.1080/15592324.2023.2214765.
Te Beest, D. E., Paveley, N. D., Shaw, M. W., and Bosch, F. van den.
2008. DiseaseWeather Relationships for Powdery Mildew and
Yellow Rust on Winter Wheat. Phytopathology® 98:609–617. https://doi.org/10.1094/phyto-98-5-0609.
Tembo, B., Mulenga, R. M., Sichilima, S., M’siska, K. K., Mwale, M.,
Chikoti, P. C., Singh, P. K., He, X., Pedley, K. F., Peterson, G. L.,
Singh, R. P., and Braun, H. J. 2020. Detection and characterization of
fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast
disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia ed.
Zonghua Wang. PLOS ONE 15:e0238724. https://doi.org/10.1371/journal.pone.0238724.
Thresh, J. M. 1998. In memory of James Edward Vanderplank
19091997. Plant Pathology 47:114–115. https://doi.org/10.1046/j.1365-3059.2998.00220.x.
Vanderplank, J. 1963. Plant disease epidemics and control.
Elsevier. https://doi.org/10.1016/c2013-0-11642-x.
Viechtbauer, W. 2010. Conducting Meta-Analyses
inRwith
themetaforPackage. Journal of Statistical
Software 36. https://doi.org/10.18637/jss.v036.i03.
Wallin, J. R. 1962. Summary of recent progress in predicting late blight
epidemics in United States and Canada. American Potato Journal
39:306–312. https://doi.org/10.1007/bf02862155.
Wiegand, T., and A. Moloney, K. 2004. Rings, circles, and null-models
for point pattern analysis in ecology. Oikos 104:209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x.
Willbur, J. F., Fall, M. L., Bloomingdale, C., Byrne, A. M., Chapman, S.
A., Isard, S. A., Magarey, R. D., McCaghey, M. M., Mueller, B. D.,
Russo, J. M., Schlegel, J., Chilvers, M. I., Mueller, D. S., Kabbage,
M., and Smith, D. L. 2018. Weather-Based Models for Assessing the Risk
of Sclerotinia sclerotiorum Apothecial Presence in
Soybean (Glycine max) Fields. Plant Disease
102:73–84. https://doi.org/10.1094/pdis-04-17-0504-re.
Windels, C. E., Lamey, H. A., Hilde, D., Widner, J., and Knudsen, T.
1998. A Cerospora Leaf Spot Model for Sugar Beet: In Practice by an
Industry. Plant Disease 82:716–726. https://doi.org/10.1094/pdis.1998.82.7.716.
Xu, X.-M., and Madden, L. V. 2004. Use of SADIE statistics
to study spatial dynamics of plant disease epidemics. Plant Pathology
53:38–49. https://doi.org/10.1111/j.1365-3059.2004.00949.x.
Xu, X.-M., and Robinson, J. D. 2000. Effects of temperature on the
incubation and latent periods of hawthorn powdery mildew
(Podosphaera clandestina). Plant Pathology
49:791–797. https://doi.org/10.1046/j.1365-3059.2000.00520.x.
Yadav, N. V. S., Vos, S. M. de, Bock, C. H., and Wood, B. W. 2012.
Development and validation of standard area diagrams to aid assessment
of pecan scab symptoms on fruit. Plant Pathology 62:325–335. https://doi.org/10.1111/j.1365-3059.2012.02641.x.
Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., and
Jin, Y. 2020. Recognition of Banana Fusarium Wilt Based on UAV Remote
Sensing. Remote Sensing 12:938. https://doi.org/10.3390/rs12060938.
Yorinori, J. T., Paiva, W. M., Frederick, R. D., Costamilan, L. M.,
Bertagnolli, P. F., Hartman, G. E., Godoy, C. V., and Nunes, J. 2005.
Epidemics of Soybean Rust (Phakopsora pachyrhizi)
in Brazil and Paraguay from 2001 to 2003. Plant Disease 89:675–677. https://doi.org/10.1094/pd-89-0675.
Zadoks, J. C., and Schein, R. D. 1988. James Edward Vanderplank:
Maverick* and Innovator. Annual Review of Phytopathology 26:31–37. https://doi.org/10.1146/annurev.py.26.090188.000335.